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Preface

Over the past 25 years, biotechnologically derived drug products have become a
major share of the therapeutically used pharmaceuticals. These drug products include
proteins, including monoclonal antibodies and antibody fragments, as well as anti-
sense oligonucleotides and DNA preparations for gene therapy. In 2001 already, bio-
tech products accounted for more than 35 % of the New Active Substances that were
launched in the USA. Twelve out of the twenty-nine approved marketing authoriza-
tion applications at the European Medicines Agency (EMA) in 2009 were biotech
products. Drug products such as epoetin-a (Epogen®, Eprex®, Procrit®), abciximab
(ReoPro®), interferons-a (Intron®A, Roferon®A) and interferons-f (Avonex®, Rebif®,
Betaseron®), anti-TNF-a agents (Enbrel®, Remicade®, Humira®), bevacizumab
(Avastin®), and trastuzumab (Herceptin®) are all examples of highly successful bio-
tech drugs that have revolutionized the pharmacotherapy of previously unmet medi-
cal needs. And last but not least, biotech drugs also have a major socioeconomic
impact. In 2010, five of the ten top selling drugs in the world were biotechnologically
derived drug products, with sales varying between five and eight billion US dollars.

The techniques of biotechnology are a driving force of modern drug discovery
as well. Due to the rapid growth in the importance of biopharmaceuticals and the
techniques of biotechnologies to modern medicine and the life sciences, the field of
pharmaceutical biotechnology has become an increasingly important component in
the education of today’s and tomorrow’s pharmacists and pharmaceutical scientists.
We believe that there is a critical need for an introductory textbook on Pharmaceutical
Biotechnology that provides well-integrated, detailed coverage of both the relevant
science and clinical application of pharmaceuticals derived by biotechnology.

Previous editions of the textbook Pharmaceutical Biotechnology: Fundamentals and
Applications have provided a well-balanced framework for education in various
aspects of pharmaceutical biotechnology, including production, dosage forms,
administration, economic and regulatory aspects, and therapeutic applications. Rapid
growth and advances in the field of pharmaceutical biotechnology, however, made it
necessary to revise this textbook in order to provide up-to-date information and
introduce readers to the cutting-edge knowledge and technology of this field.

This fourth edition of the textbook Pharmaceutical Biotechnology: Fundamentals
and Applications builds on the successful concept used in the preceding editions and
further expands its availability as electronic versions of the full book as well as indi-
vidual chapters are now readily available and downloadable though online
platforms.

The textbook is structured into two sections. An initial basic science and general
features section comprises chapters introducing the reader to key concepts at the
foundation of the technology relevant for protein therapeutics including molecular
biology, production and analytical procedures, formulation development, pharmaco-
kinetics and pharmacodynamics, and immunogenicity and chapters dealing with
regulatory, economic and pharmacy practice considerations, and with evolving new
technologies and applications. The second section discusses the various therapeutic
classes of protein biologics and nucleotide-based therapeutics.
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PREFACE

All chapters of the previous edition were revised and regrouped according to
therapeutic application. The section on Monoclonal Antibodies was differentiated
into a section on general considerations for this important class of biologics as well as
sections focused on their application in oncology, inflammation, and transplantation
in order to allow for a comprehensive discussion of the substantial number of
approved antibody drugs. A chapter on stem cell technologies was newly added to
give greater depth to the area of cell-based technologies.

In accordance with previous editions, the new edition of Pharmaceutical
Biotechnology: Fundamentals and Applications will have as a primary target students in
undergraduate and professional pharmacy programs as well as graduate students in
the pharmaceutical sciences. An additional important audience is pharmaceutical sci-
entists in industry and academia, particularly those that have not received formal
training in pharmaceutical biotechnology and are inexperienced in this field.

We are convinced that this fourth edition of Pharmaceutical Biotechnology:
Fundamentals and Applications makes an important contribution to the education of
pharmaceutical scientists, pharmacists, and other healthcare professionals as well as
serving as a ready resource on biotechnology. By increasing the knowledge and
expertise in the development, application, and therapeutic use of “biotech” drugs, we
hope to help facilitate a widespread, rational, and safe application of this important
and rapidly evolving class of therapeutics.

Utrecht, The Netherlands Daan ].A. Crommelin
Vancouver, BC, Canada Robert D. Sindelar
Memphis, TN, USA Bernd Meibohm
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Molecular Biotechnology: From DNA
Sequence to Therapeutic Protein

Ronald S. Oosting

INTRODUCTION

Proteins are already used for more than 100 years to treat
or prevent diseases in humans. It started in the early
1890s with “serum therapy” for the treatment of diph-
theria and tetanus by Emile von Behring and others. The
antiserum was obtained from immunized rabbits and
horses. Behring received the Nobel Prize for Medicine in
1901 for this pioneering work on passive immunization.
A next big step in the development of therapeutic pro-
teins was the use of purified insulin isolated from pig or
cow pancreas for the treatment of diabetes type I in the
early 1920s by Banting and Best (in 1923 Banting received
the Nobel Prize for this work). Soon after the discovery
of insulin, the pharmaceutical company Eli Lilly started
large-scale production of the pancreatic extracts for the
treatment of diabetes. Within 3 years after the start of the
experiments by Banting, already enough animal-derived
insulin was produced to supply the entire North
American continent. Compare this to the present aver-
age time-to-market of a new drug (from discovery to
approval) of 13.5 years (Paul et al. 2010).

Thanks to advances in biotechnology (e.g., recom-
binant DNA technology, hybridoma technology), we
have moved almost entirely away from animal-derived
proteins to proteins with the complete human amino
acid sequence.

Such therapeutic human proteins are less likely to
cause side effects and to elicit immune responses.
Banting and Best were very lucky. They had no idea
about possible sequence or structural differences
between human and porcine/bovine insulin.
Nowadays, we know that porcine insulin differs only
with one amino acid from the human sequence and
bovine insulin differs by three amino acids (see Fig. 1.1).

R.S. Oosting, Ph.D.

Division of Pharmacology, Utrecht Institute for
Pharmaceutical Sciences, Utrecht University,
Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
e-mail: r.s.0osting@uu.nl

Thanks to this high degree of sequence conservation,
porcine/bovine insulin can be used to treat human
patients. In 1982, human insulin became the first
recombinant human protein approved for sale in the
USA (also produced by Eli Lilly) (cf. Chap. 12). Since
then a large number of biopharmaceuticals have been
developed. There are now almost 200 human proteins
marketed for a wide range of therapeutic areas.

PHARMACEUTICAL BIOTECHNOLOGY, WHY THIS
BOOK, WHY THIS CHAPTER?

In this book we define pharmaceutical biotechnology
as all technologies needed to produce biopharmaceuti-
cals (other than (nongenetically modified) animal- or
human blood-derived medicines). Attention is paid
both to these technologies and the products thereof.
Biotechnology makes use of findings from various
research areas, such as molecular biology, biochemistry,
cell biology, genetics, bioinformatics, microbiology,
bioprocess engineering, and separation technologies.
Progress in these fields has been and will remain a
major driver for the development of new biopharma-
ceuticals. Biopharmaceuticals form a fast-growing seg-
mentin the world of medicines opening new therapeutic
options for patients with severe diseases. This success
is also reflected by the fast growth in global sales.
Double-digit growth numbers were reported over the
last 25 years, reaching $80 billion in 2012. Five drugs in
the top ten of drugs with the highest sales are biophar-
maceuticals (2010), clearly showing the therapeutic and
economic importance of this class of drugs.

Until now biopharmaceuticals are primarily pro-
teins, but therapeutic DNA or RNA molecules (think
about gene therapy products, DNA vaccines, and RNA
interference-based products; Chaps. 22, 23, and 24,
respectively) may soon become part of our therapeutic
arsenal.

Therapeutic proteins differ in many aspects from
classical, small molecule drugs. They differ in size, com-
position, production, purification, contaminations, side

D.J.A. Crommelin, R.D. Sindelar, and B. Meibohm (eds.), Pharmaceutical Biotechnology,
DOI 10.1007 /978-1-4614-6486-0_1, © Springer Science+Business Media New York 2013
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a signal peptide beta chain
human MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAED
porcine MALWTRLLPLLALLALWAPAPAQAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAEN
bovine MALWTRLAPLLALLALWAPAPARAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREVEG
Tkt Tk Thhkxhkkhkk*% 7 * At KREEXEAXAEEARER TR TR AT AT htx%k H *kh 5 *
alpha chain
human LOVGQVELGGGPGAGSLQPLALEGSLOQKRGIVEQCCTSICSLYQLENYCN
porcine POAGAVELGGGLG-~-GLQALALEGPPQKRGIVEQCCTSICSLYQLENYCN
bovine PQVGALELAGGPG=====~ AGGLEGPPQKRGIVEQCCASVCSLYQLENYCN
* k skk Kk K JEEKE KRR RRAKAIR K R RR AR A AATRN
b
A chain intra-chain
disulfide
o
e ‘0‘ Sy
Cys
S intra-chain
intra-chain ’ disulfide
B chain disulfide ” bridge ..
@@@ | g, T GREe®
@@ Cys@@ @
Figure 1.1 (a) Multiple alignment (http://www.ebi.ac.uk/Tools/msa/clustalw2) of the amino acid sequences of human, porcine, and

bovine preproinsulin. (*): identical residue. (b) Schematic drawing of the structure of insulin. The alpha and beta chain are linked by two
disulphide bridges. Both the one-letter and three-letter codes for the amino acids are used in this figure: alanine (ala, A), arginine (arg,

R), asparagine (asn, N), aspartic acid (asp,

D), cysteine (cys, C), glutamic acid (glu, E), glutamine (gin, Q), glycine (gly,

H), histidine

(his, H), isoleucine (ile, 1), leucine (leu, L), lysine (Lys, K), methionine (met, M), phenylalanine (phe, F), proline (pro, P), serine (ser, S),

threonine (thr, T), tryptophan (trp,

effects, stability, formulation, regulatory aspects, etc.
These fundamental differences justify paying attention to
therapeutic proteins as a family of medicines, with many
general properties different from small molecules. These
general aspects are discussed in the first set of chapters of
this book (“General Topics”). After those general topics,
the different families of biopharmaceuticals are dealt with
in detail. This first chapter should be seen as a chapter
where many of the basic elements of the selection, design,
and production of biopharmaceuticals are touched upon.
For in detail information the reader is referred to relevant
literature and other chapters in this book.

ECONOMICS AND USE

Newly introduced biopharmaceuticals are very expen-
sive. This is partly due to the high development cost
(~$1.5 billion), but this is not different from the development
costs of small molecule drugs (Paul et al. 2010), com-
bined with high production costs and, for many thera-
peutic proteins, a relatively low number of patients. In

W), tyrosine (tyr, Y), and valine (val, V) (Figure b is taken from Wikipedia).

addition, the relatively high price of (bio) pharmaceuti-
cals is also due to too many failures in the drug discov-
ery and development process. The few products that
actually reach the market have to compensate for all
the expenses made for failed products. For a monoclo-
nal antibody, the probability to proceed from the pre-
clinical discovery stage into the market is around 17 %
(for small molecule drugs the probability of success is
even lower, ~7 %). Economic aspects of biopharmaceu-
ticals are discussed in Chap. 10.

As mentioned above, the number of patients for
many marketed therapeutic proteins is relatively small.
This has several reasons. The high price of therapeutic
proteins makes that they are used primarily for the
treatment of the relative severe cases. The specificity of
many therapeutic proteins makes that they are only
effective in subgroups of patients (personalized medi-
cine). This is in particular true for the monoclonal anti-
bodies used to treat cancer patients. For instance, the
antibody trastuzumab (Herceptin) is only approved
for breast cancer patients with high expression levels of
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the HER2 receptor on the tumor cells (+20 % of breast
cancer cases). Other examples from the cancer field are
the monoclonal antibodies cetuximab and panitu-
mumab for the treatment of metastatic colorectal can-
cer. Both antibodies target the EGF receptor. Successful
treatment of a patient with one of these monoclonal
antibodies depends on (1) the presence of the EGF
receptor on the tumor and (2) the absence of mutations
in signaling proteins downstream of the EGF receptor
(KRAS and BRAF). Mutations in downstream signal-
ing proteins cause the tumor to grow independently
from the EGF receptor and make the tumor nonrespon-
sive to the antagonistic monoclonal antibodies.

Some diseases are very rare and thus the number
of patients is very small. Most of these rare diseases are
due to a genetic defect. Examples are cystic fibrosis (CF)
and glycogen storage disease II (GSD II or Pompe dis-
ease). CF is most common in Caucasians. In Europe
1:2,000-3,000 babies are affected annually. GSD Il is even
rarer. It affects 1:140,000 newborns. The effects of GSD II
can be reduced by giving the patients recombinant myo-
zyme. It is clear that developing a drug for such a small
patient population is commercially not very interesting.

MOLECULAR BIOTECHNOLOGY: FROM DNA SEQUENCE TO THERAPEUTIC PROTEIN
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To booster drug development for the rare diseases
(known as orphan drugs and orphan diseases), in the
USA, Europe, and Japan, specific legislation exists.

FROM AN IN SILICO DNA SEQUENCE
TO A THERAPEUTIC PROTEIN

We will discuss now the steps and methods needed to
select, design, and produce a recombinant therapeutic
protein (see also Fig. 1.2). We will not discuss in detail
the underlying biological mechanisms. We will limit
ourselves, in Box 1.1, to a short description of the cen-
tral dogma of molecular biology, which describes the
flow of information from DNA via RNA into a protein.
For detailed information, the reader is referred to more
specialized molecular biology and cell biology books
(see “Recommended Reading” at the end of this
chapter).

M Selection of a Therapeutic Protein

The selection of what protein should be developed for
a treatment of a particular disease is often challenging,
with lots of uncertainties. This is why most big phar-

Cloning into suitable expression vector

Target selection

|

coding sequence can be obtained
from a DNA database.
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to be inserted

~
Q.

Transformation of E.coli and
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AGCCCTCCAGGACAGGCTGCATCAGAAGAGGCCATCA
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Quality cl
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Figure 1.2 m Schematic representation of all the steps required to produce a therapeutic protein.
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a

>gi|109148525|ref|NM_000207.2| Homo sapiens insulin (INS), transeript

variant 1, mRNA

5'AGCCCTCCAGGACAGGCTGCATCAGAAGAGGCCATCAAGCAGATCACTGTCCTTCTGCCATGGCCCTGT

GGATGCGCCTCCTGCCCCTGCTGGCGCTGCTGGCCCTCTGGGGACCTGACCCAGCCGCAGCCTTTGTGAAC
CAACACCTGTGCGGCTCACACCTGGTGGAAGCTCTCTACCTAGTGTGCGCGGGAACGAGGCTTCTTCTACAC

Figure 1.3 m DNA seque-
nces are always written from
the 5° — 3’ direction and pro-
teins sequences from the
amino-terminal to the carboxy-
terminal.

ACCCAAGACCCGCCGGGAGGCAGAGGACCTGCAGGTGGGGCAGGTGGAGCTGGGCGGGGGCCCTGGTGCAG

GCAGCCTGCAGCCCTTGGCCCTGGAGGGGTCCCTGCAGAAGCGTGGCATTGTGGAACAATGCTGTACCAGC
ATCTGCTCCCTCTACCAGCTGGAGAACTACTGCAACTAGACGCAGCCCGCAGGCAGCCCCACACCCGCCGL

CTCCTGCACCGAGAGAGATGGAATAAAGCCCTTGAACCAGCAAAA 3

b

>gi|4557671|ref |[NP_000198.1| insulin preproprotein [Homo sapiens]
(NH, )MALWMRLLPLLALLALWGPDPAAAFVNQELCGSELVEALYLVCGERGFFYTPKTRREAEDLQVGQV
ELGGGPGAGSLOPLALEGSLOQKRGIVEQCCTSICSLYQLENYCN-(COOH)

maceutical companies only become interested in a cer-
tain product when there is some clinical evidence that
the new product actually works and that it is safe. This
business model gives opportunities for startup biotech
companies and venture capitalists to engage in this
important early development process.

Sometimes the choice for a certain protein as a ther-
apeutic drug is very simple. Think, for instance, about
replacement of endogenous proteins such as insulin and
erythropoietin for the treatment of diabetes type I and
anemia, respectively. For many other diseases it is much
more difficult to identify an effective therapeutic protein
or target. For instance, an antibody directed against a
growth factor receptor on a tumor cell may look promis-
ing based on in vitro and animal research but may be
largely ineffective in (most) human cancer patients.

It is beyond the scope of this chapter to go further
into the topic of therapeutic protein and target discov-
ery. For further information the reader is referred to the
large number of scientific papers on this topic, as can
be searched using PubMed (http://www.ncbinlm.
nih.gov/pubmed).

In the rest of this chapter, we will mainly focus on
a typical example of the steps in the molecular cloning
process and production of a therapeutic protein. At the
end of this chapter, we will shortly discuss the cloning
and large-scale production of monoclonal antibodies
(see also Chap. 7).

Molecular cloning is defined as the assembly of
recombinant DN A molecules (most often from two dif-
ferent organisms) and their replication within host cells.

W DNA Sequence
The DNA, mRNA, and amino acid sequence of every
protein in the human genome can be obtained from
publicly available gene and protein databases, like
those present at the National Center for Biotechnology
Information (NCBI) in the USA and the European
Molecular Biology Laboratory (EMBL). Their websites
are http:/ /www.ncbinlm.nih.gov/ and http://www.
ebi.ac.uk/Databases/, respectively.

DNA sequences in these databases are always
given from the 5" end to the 3’ end and protein sequences

from the amino- to the carboxy-terminal end (see
Fig. 1.3). These databases also contain information
about the gene (e.g., exons, introns, and regulatory
sequences. See Box 1.1 for explanations of these terms)
and protein structure (domains, specific sites, post-
translation modifications, etc.). The presence or absence
of certain posttranslation modifications determines
what expression hosts (e.g., Escherichia coli (E. coli),
yeast, or a mammalian cell line) can be used (see below).

W Selection of Expression Host

Recombinant proteins can be produced in E. coli, yeast,
plants (e.g., rice and tomato), mammalian cells, and
even by transgenic animals. All these expression hosts
have different pros and cons.

Most marketed therapeutic proteins are produced
in cultured mammalian cells. In particular Chinese
hamster ovary (CHO) cells are used. On first sight,
mammalian cells are not a logical choice. They are
much more difficult to culture than, for instance, bacte-
ria or yeast. On average, mammalian cells divide only
once every 24 h, while cell division in E. coli takes ~
30 min and in yeast ~ 1 h. In addition, mammalian cells
need expensive growth media and in many cases
bovine (fetal) serum as a source of growth factors (see
Table 1.1 for a comparison of the various expression
systems). Since the outbreak of the bovine or transmis-
sible spongiform encephalopathy epidemic (BSE/TSE,
better known as mad cow disease) under cattle in the
United Kingdom, the use of bovine serum for the pro-
duction of therapeutic proteins is considered a safety
risk by the regulatory authorities (like the EMA in
Europe and the FDA in the USA). To minimize the risk
of transmitting TSE via a medicinal product, bovine
serum has to be obtained from animals in countries
with the lowest possible TSE risk, e.g., the USA,
Australia, and New Zealand.

The main reason why mammalian cells are used
as production platform for therapeutic proteins is that
in these cells posttranslational modification (PTM) of
the synthesized proteins resembles most closely the
human situation. An important PTM is the formation
of disulfide bonds between two cysteine moieties.
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Prokaryotes Yeast
E. coli Pichia pastoris Saccharomyces
cerevisiae
+ Easy manipulation Grows relatively rapidly

Rapid growth
Large-scale fermentation
Simple media

High yield

modifications

Large-scale fermentation
Performs some posttranslational

Mammalian cells
(e.g., CHO or HEK293 cells)

May grow in suspension, perform
all required posttranslational
modifications

- Proteins may not fold correctly or may
even aggregate (inclusion bodies)
Almost no posttranslational

modifications
Table 1.1
(W-linkage) Asparagine
CH,OH HlN
|
O\ N—C—CH,—C
I |
(0] cC=0
HO OH |
NH
\ N-acetylglucosamine
(0] :C‘i linked to asparagine
CH,
Figure 1.4

Posttranslational modifications may differ
from humans (especially glycosylation)

Slow growth

Expensive media

Difficult to scale up
Dependence of serum (BSE)

Pros and cons of different expression hosts

(O-linkage) Serine
CH,OH H‘N
\
HO O\ 0 — CH,—CH
|
OH C=0
|
NH
\ N-acetylgalactosamine
O0=C linked to serine

\
CH,

Glycosylation takes place either at the nitrogen atom in the side chain of asparagine (N-linked) or at the oxygen atom in

the side chain of serine or threonine. Glycosylation of asparagine takes place only when this residue is part of an Asn-X-Ser or Ans-X-Thr
(X can be any residue except proline). Not all potential sites are glycosylated. Which sites become glycosylated depend also on the
protein structure and on the cell type in which the protein is expressed.

Disulfide bonds are crucial for stabilizing the tertiary
structure of a protein. E. coli is not able to make disul-
fide bonds in a protein, and already for this reason, E.
coli is not very suitable for producing most of the mar-
keted therapeutic proteins.

Another important PTM of therapeutic proteins is
glycosylation. Around 70 % of all marketed therapeutic
proteins, including monoclonal antibodies, are glyco-
sylated. Glycosylation is the covalent attachment of oli-
gosaccharides to either asparagine (N-linked) or serine/
threonine (O-linked) (see Fig. 1.4). The oligosaccharide
moiety of a therapeutic protein affects many of its phar-
macological properties, including stability, solubility,
bioavailability, in vivo activity, pharmacokinetics, and
immunogenicity. Glycosylation differs between species,
between different cell types within a species, and even
between batches of in cell culture-produced therapeutic
proteins. N-linked glycosylation is found in all eukary-
otes (and also in some bacteria, but not in E. coli; see
Nothaft and Szymanski 2010) and takes place in the
lumen of the endoplasmatic reticulum and the Golgi
system (see Fig. 1.5). All N-linked oligosaccharides
have a common pentasaccharide core containing three
mannose and two N-acetylglucosamine (GlcNAc) resi-
dues. Additional sugars are attached to this core. These

maturation reactions take place in the Golgi system and
differ between expression hosts. In yeast, the mature
glycoproteins are rich in mannose, while in mammalian
cells much more complex oligosaccharide structures are
possible. O-linked glycosylation takes place solely in
the Golgi system.

In Chap. 3 more details can be found regarding
the selection of the expression system.

H CopyDNA

The next step is to obtain the actual DNA that codes
for the protein. This DNA is obtained by reverse-
transcribing the mRNA sequence into copyDNA
(cDNA). To explain this process, it is important to dis-
cuss first the structure of a mammalian gene and
mRNA.

Most mammalian genes contain fragments of
coding DNA (exons) interspersed by stretches of
DNA that do not contain protein-coding information
(introns). Messenger RNA synthesis starts with the
making of a large primary transcript. Then, the
introns are removed via a regulated process, called
splicing. The mature mRNA contains only the exon
sequences. Most mammalian mRNAs contain also a
so-called poly-A “tail,” a string of 100-300 adenosine
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Figure 1.5 m Schematic drawing of the N-linked glycosylation process as occurs in the endoplasmic reticulum (ER) and Golgi
system of a eukaryotic cell. (1) The ribozyme binds to the mRNA and translation starts at the AUG. The first ~ 20 amino acids form
the signal peptide. (2) The signal recognition particle (SRP) binds the signal peptide. (3) Next, the SRP docks with the SRP receptor
to the cytosolic side of the ER membrane. (4) The SRP is released and (5) the ribosomes dock onto the ER membrane. (6)
Translation continues until the protein is complete. (7) A large oligosaccharide (activated by coupling to dolichol phosphate) is trans-
ferred to the specific asparagine (N) residue of the growing polypeptide chain. (8) Proteins in the lumen of the ER are transported
to the Golgi system. (9) The outer carbohydrate residues are removed by glycosidases. Next, glycosyltransferases add different
carbohydrates to the core structure. The complex type carbohydrate structure shown is just an example out of many possible variet-
ies. The exact structure of the oligosaccharide attached to the peptide chain differs between cell types and even between different
batches of in cell culture-produced therapeutic proteins. (70) Finally, secretory vesicles containing the glycoproteins are budded
from the Golgi. After fusion of these vesicles with the plasma membrane, their content is released into the extracellular space.

nucleotides. These adenines are coupled to the
mRNA molecule in a process called polyadenylation.
Polyadenylation is initiated by binding of a specific set
of proteins at the polyadenylation site at the end of the
mRNA. The poly-A tail is important for transport of
the mRNA from the nucleus into the cytosol, for trans-
lation, and it protects the mRNA from degradation.

An essential tool in cDNA formation is reverse
transcriptase (RT). This enzyme was originally found
in retroviruses. These viruses contain an RNA genome.
After infecting a host cell, their RNA genome is reverse-
transcribed first into DNA. The finding that RNA can
be reverse-transcribed into DNA by RT is an important
exception of the central dogma of molecular biology
(as discussed in Box 1.1).

To obtain the coding DNA of the protein, one
starts by isolating (m)RNA from cells/tissue that
expresses the protein. Next, the mRNA is reverse-

transcribed into copyDNA (cDNA) (see Fig. 1.6). The
RT reaction is performed in the presence of an oligo-dT
(a single-stranded oligonucleotide containing ~20 thy-
midines). The oligo-dT binds to the poly-A tail and
reverse transcriptase couples deoxyribonucleotides
complementary to the mRNA template, to the 3’end of
the growing cDNA. In this way a so-called library of
cDNAs is obtained, representing all the mRNAs
expressed in the starting cells or tissue.

The next step is to amplify specifically the cDNA
for the protein of interest using the polymerase chain
reaction (PCR, see Fig. 1.7). A PCR reaction uses a (c)
DNA template, a forward primer, a reverse primer,
deoxyribonucleotides (dATP, dCTP, dGTP, and dTTP),
Mg?, and a thermostable DNA polymerase. DNA
polymerase adds free nucleotides only to the 3’ end of
the newly forming strand. This results in elongation of
the new strand in a 5'— 3’ direction. DNA polymerase
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Box 1.1 = The Central Dogma of Molecular Biology

The central dogma of molecular biology was first stated by
Francis Crick in 1958 and deals with the information flow in
biological systems and can best be summarized as “DNA
makes RNA makes protein” (this quote is from Marshall
Nirenberg who received the Nobel Prize in 1968 for decipher-
ing the genetic code). The basis of the information flow from
DNA via RNA into a protein is pairing of complementary
bases; thus, adenine (A) forms a base pair with thymidine (T)
in DNA or uracil in RNA and guanine (G) forms a base pair
with cytosine (C).

To make a protein, the information contained in a
gene is first transferred into a RNA molecule. RNA polymer-
ases and transcription factors (these proteins bind to regu-
latory sequences on the DNA, like promoters and
enhancers) are needed for this process. In eukaryotic cells,
genes are built of exons and introns. Intron sequences
(intron is derived from intragenic region) are removed from
the primary transcript by a highly regulated process which
is called splicing. The remaining mRNA is built solely of
exon sequences and contains the coding sequence or
sense sequence. In eukaryotic cells, transcription and splic-
ing take place in the nucleus.

The next step is translation of the mRNA molecule into
a protein. This process starts by binding of the mRNA to a
ribosome. The mRNA is read by the ribosome as a string of
adjacent 3-nucleotide-long sequences, called codons.
Complexes of specific proteins (initiation and elongation fac-
tors) bring aminoacylated transfer RNAs (tRNAs) into the
ribosome-mRNA complex. Each tRNAs (via its anticodon
sequence) base pairs with its specific codon in the mRNA,
thereby adding the correct amino acid in the sequence
encoded by the gene. There are 64 possible codon sequences.
Sixty-one of those encode for the 20 possible amino acids.
This means that the genetic code is redundant (see Table 1.2).
Translation starts at the start codon AUG, which codes for
methionine and ends at one of the three possible stop codons:

UAA, UGA, or UAG. The nascent polypeptide chain is then
released from the ribosome as a mature protein. In some
cases the new polypeptide chain requires additional process-
ing to make a mature protein.

UAA /

2nd Base
U Cc A G
U Phe Ser Tyr Cys U
Phe Ser Tyr Cys (&
Leu Ser Stop Stop A
1 Leu Ser Stop Trp G 3
s C Leu Pro His Arg U r
t Leu Pro His Arg C d
Leu Pro Gin Arg A
b Leu Pro Gin Arg G b
a A e Thr Asn Ser U a
s lle Thr Asn Ser C S
e lle Thr Lys Arg A e
Met Thr Lys Arg G
G \Val Ala Asp Gly U
Val Ala Asp Gly Cc
Val Ala Glu Gly A
Val Ala Glu Gly G
Table 1.2 = The genetic code.
stopcodon Figure 1.6 W Reverse

transcriptase reaction.
PolyA tail

/

AAAAA

Reverse transcriptase

Oligo-dT (TTTTTTTTTT)

mRNA
Cells
i AUG

Isolate 5’ ca
mRNA

Start

codon

+
TAC ATT

TTTTTTTTTT

cDNA

7
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can add a nucleotide only to a preexisting 3'-OH end,
and therefore it needs a primer at which it can add the
first nucleotide. PCR primers are single-stranded oli-
gonucleotides around 20 to 30 nucleotides long, flank-
ing opposite ends of the target DNA (see Fig. 1.8). The
PCRis usually carried out for 30 cycles. Each cycle con-
sists of three stages: a denaturing stage at ~94 °C (the
double-stranded DNA is converted into single-
stranded DNA), a primer annealing stage at ~60 °C
(the optimal anneal temperature depends on sequences
of the primers and template), and an extension stage at
72 °C. Theoretically, the amount of DNA should double
during each cycle. A 30-cycle-long PCR should there-
fore result in a 2% fold (~10°) increase in the amount of
DNA. In practice this is never reached. In particular at
later cycles, the efficiency of the PCR reaction reduces.

PCR makes use of a thermostable DNA poly-
merase. These polymerases were obtained from
Archaea living in hot springs such as those occurring
in Yellowstone National Park (see Fig. 1.9) and at the
ocean bottom. DNA polymerases make mistakes.
When the aim is to clone and express a PCR product, a
thermostable DNA polymerase should be used with
3'=5" exonuclease “proofreading activity.” One such
enzyme is Pfu polymerase. This enzyme makes 1 mis-
take per every 10° base pairs, while the well-known
Taq polymerase, an enzyme without proofreading
activity, makes on average ten times more mistakes.
As a trade-off, Pfu is much slower than Taq polymerase
(Pfu adds+1,000 nucleotides per minute to the grow-
ing DNA chain and Taq 6,000 nucleotides/min).

M Cloning PCR Products into an Expression Vector

There are several ways to clone a PCR product. One of
the easiest ways is known as TA cloning (see
Fig. 1.10). TA cloning makes use of the property of Taq
polymerase to add a single adenosine to the 3’end of a
PCR product. Such a PCR product can subsequently be
ligated (using DNA ligase, see Molecular Biology tool-
box) into a plasmid with a 5" thymidine overhang (see
Box 1.2 for a general description of expression plasmids).
PCR products obtained with a DNA polymerase with
proofreading activity have a blunt end, and thus they
do not contain the 3" A overhang. However, such PCR
fragments can easily be A-tailed by incubating for a
short period with Taq polymerase and dATP. Blunt PCR
products can also directly be cloned into a linearized
plasmid with 2 blunt ends. However, the efficiency of
blunt-end PCR cloning is much lower than that of TA
cloning. A disadvantage of TA and blunt-end cloning is
that directional cloning is not possible, so the PCR
fragment can be cloned either in the sense or antisense
direction (see Fig. 1.10). PCR products can also be
cloned by adding unique recognition sites of restriction
enzymes to both ends of the PCR product. This can be
done by incorporating these sites at the 5'end of the

@ Denaturation
v
A\
5' 3

3' 5'

@ Annealing
\4 U

5' 3 5—»3' ,
35 3 5
RP
@ Elongation
v v
5. 3 >
3 <5
v
5' 3
+ +
3 5
®:®
A\
5 3 95 3
3 <5 3 <5
FP
5'—p—3'
3 5'

Wi

v

Exponential growth of short product, while the longer
products under go lineair amplification

Figure 1.7 m The PCR process. (7) DNA is denatured at
94-96 °C. (2) The temperature is lowered to + 60 °C. At this tem-
perature the primers bind (anneal) to their target sequence in the
DNA. (3) Next, the temperature is raised to 72 °C, the optimal
temperature for Taq polymerase. Four cycles are shown here. A
typical PCR reaction runs for 30 cycles. The arrows point to the
desired PCR product.

PCR primers. Although this strategy looks very
straightforward, it is also not very efficient.

After ligation, the plasmid is introduced into
E. coliby a process called transformation. There are sev-
eral ways to transform E. coli. Most used are the calcium
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Forward primer (sequence is similar as the published data base)

5'ATGCAGGGGCCCTCEETGCTECTGCTGCTGGGCCTGAGGCTACAGCTCTCCCTGGGCGTCA
TCCCAGCTGAGGAGGAGAACCCGGCCTTCTGGAACCGCCAGGCAGCTGAGGCCCTGGATGCT
GCCAAGAAGCTGCAGCCCATCCAGAAGGTCGCCAAGAACCTCATCCTCTTCCTGGGCGATGG
GTTGGGGGTGCCCACGGTGACA . c et tevevsessevscsessssosssssscssssossnsans
CCAGCAGCAGGCGGCGGTGCCCCTGTCGTCCGAGACCCACGGAGGCGARGACGTGGCGGTGT
TTGCGCGCGGCCCGCAGGCGCACCTGGTGCATGGTGTGCAGGAGCAGAGCTTCGTAGCGCAT
GTCATGGCCTTCGCTGCCTGTCTGGAGCTCCAGACAGGCAGCGAAGGCCTACCCTACACGGC
CTGCGACCTGGCGCCTCOCGCCTGCACCACCGACGCCGCGCACCCAGTTGCCGCGTCGCTGC
CACTGCTGGCCGGGACCCNGCTGCTGCTGGGGGCGTCCGCTGCTCCCTGA

5' CTCCCAGACAGGCAGCGAAGGCCAT
Reverse primer (complementary and reverse)

w

Figure 1.9 m A hot spring in Yellowstone National Park. In hot
spring like this one, Archaea, the bacterial source of thermosta-
ble polymerases, live.

chloride method (better known as heat shock) and elec-
troporation (the bacteria are exposed to a very high
electric pulse). Whatever the transformation method,
channels in the membrane are opened through which
the plasmid can enter the cell. Next, the bacteria are
plated onto an agar plate with an antibiotic. Only bac-
teria that have taken up the plasmid with an antibiotic-
resistant gene and thus produce a protein that degrades
the antibiotic will survive. After an overnight incuba-
tion at 37 °C, the agar plate will contain a number of
clones. The bacteria in each colony are the descendants
of one bacterium. Subsequently, aliquots of a number
of these colonies are grown overnight in liquid medium
at 37 °C. From these cultures, plasmids can be isolated
(this is known as a miniprep). The next steps will be to
determine whether the obtained plasmid preparations

Figure 1.8 m PCR primer
design.

contain an insert, and if so, to determine what the ori-
entation is of the insert relative to the promoter that
will drive the recombinant protein expression. The ori-
entation can, for instance, be determined by cutting the
obtained plasmids with a restriction enzyme that cuts
only once somewhere in the plasmid and with another
enzyme that cuts once somewhere in the insert. On the
basis of the obtained fragment sizes (determined via
agarose gel electrophoresis using appropriate molecu-
lar weight standards), the orientation of the insert in
the plasmid can be determined (see Fig. 1.10).

As already discussed above, DNA polymerases
make mistakes, and therefore, it is crucial to determine
the nucleotide sequence of the cloned PCR fragment.
DNA sequencing is a very important method in bio-
technology (the developments in high-throughput
sequencing have enabled the sequencing of many dif-
ferent genomes, including that of humans) and is
therefore further explained in Box 1.3.

W Transfection of Host Cells and Recombinant
Protein Production

Introducing DNA into a mammalian cell is called
transfection (and as already mentioned above, trans-
formation in E. coli). There are several methods to
introduce DNA into a mammalian cell line. Most often,
the plasmid DNA is complexed to cationic lipids (like
Lipofectamine) or polymers (like polyethyleneimines
or PEI) and then pipetted to the cells. Next, the posi-
tively charged aggregates bind to the negatively
charged cell membrane and are subsequently endocy-
tosized (see Fig. 1.11). Then, the plasmid DNA has to
escape from the endosome and has to find its way into
the nucleus where mRNA synthesis can take place.
This is actually achieved during cell division when the
nuclear membrane is absent. Another way to introduce
DNA into the cytosol is through electroporation.
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Plasmids.

Schematic drawing of an expression plasmid for
a mammalian cell line

Recombinant DNA fragment

L J

Promoter l pA
Tcs\

pA
ORi
promoter
(active in Neomycin
E.coli) resistance
Ampicilin
resistance L _
(Active in mammalian
cell line)

Plasmids are self-replicating circular extrachromo-

somal DNA molecules. The plasmids used nowadays in bio-
technology are constructed partly from naturally occurring
plasmids and partly from synthetic DNA. The figure above
shows a schematic representation of a plasmid suitable for
driving protein expression in a mammalian cell. The most
important features of this plasmid are:

1.

2.

An origin of replication. The ori allows plasmids to replicate
separately from the host cell’'s chromosome.

A multiple cloning site. The MCS contains recognition sites
for a number of restriction enzymes. The presence of the
MCS in plasmids makes it relatively easy to transfer a DNA
fragment from one plasmid into another.
Antibiotic-resistant genes. All plasmids contain a gene that
makes the recipient E. coli resistant to an antibiotic, in this
case resistant to ampicillin. Other antibiotic-resistant
genes that are often used confer resistance to tetracycline
and Zeocin. The expression plasmid contains also the
neomycin resistance gene. This selection marker enables
selection of those mammalian cells that have integrated
the plasmid DNA in their chromosome. The protein product
of the neomycin resistance gene inactivates the toxin
Geneticin.

Promoter to drive gene expression. Many expression vec-
tors for mammalian cells contain the CMV promoter, which
is taken from the cytomegaloma virus and is constitutively

active. To drive recombinant protein expression in other
expression hosts, other plasmids with other promoter
sequences have to be used.

. Poly (A) recognition site. This site becomes part of the

newly produced mRNA and binds a protein complex that
adds subsequently a poly (A) tail to the 3’ end of the mRNA.
Expression vectors that are used to drive protein expres-
sion in E. coli do not contain a poly(A) recognition site.

Molecular biology enzyme toolbox

DNA polymerase produces a polynucleotide sequence
against a nucleotide template strand using base pairing
interactions (G against C and A against T). It adds nucleo-
tides to a free 3'OH, and thus it acts in a 5’ — 3’ direction.
Some polymerases have also 3’ — 5’ exonuclease activity
(see below), which mediates proofreading.

Reverse transcriptase (RT) is a special kind of DNA
polymerase, since it requires an RNA template instead of
a DNA template.

Restriction enzymes are endonucleases that bind spe-
cific recognition sites on DNA and cut both strands.
Restriction enzymes can either cut both DNA strands at
the same location (blunt end) or they can cut at different
sites on each strand, generating a single-stranded end
(better known as a sticky end).

Examples:
Hindlll  5’A*AGCTT Xhol 5'C*TCGAG
3'TTCGA®A 3'GAGCT:C
Kpnl  5'GGTAC*C EcoRV  5'GATPATC
3'CACATGG 3'CTA*TAG
Notl 5'GC*GGCCGC  Pacl 5'TTAATRTAA
3'CGCCGGCG 3'AATFTAATT

alocation where the enzyme cuts

DNA ligase joints two DNA fragments. It links covalently
the 3’-OH of one strand with the 5’-PO4 of the other DNA
strand. The linkage of two DNA molecules with comple-
mentary sticky ends by ligase is much more efficient than
blunt-end ligation.

Alkaline phosphatase. A ligation reaction of a blunt-end
DNA fragment into a plasmid also with blunt ends will
result primarily in empty plasmids, being the result of self-
ligation. Treatment of a plasmid with blunt ends with alka-
line phosphatase, which removes the 5'PO4 groups,
prevents self-ligation.

Exonucleases remove nucleotides one at a time from
the end (exo) of a DNA molecule. They act, depending on
the type of enzyme, either in a 5’ — 3’ or 3— 5’ direction
and on single- or double-stranded DNA. Some polymer-
ases have also exonuclease activity (required for proof-
reading). Exonucleases are used, for instance, to generate
blunt ends on a DNA molecule with either a 3’ or 5’
extension.
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1000 bp

~ 800 200"

5 ATG TAA A
A —5'
unique
) Restriction
unique + site |
restriction T
site Il T
3000 bp
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I ATG  TAA I TTA  CAT
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3200
800
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Figure 1.10 m Cloning of a PCR product via TA cloning (a).
This cloning strategy makes use of the property of Taq poly-
merase to add an extra A to the 3’ end of the PCR product. To
determine the orientation of the insert, the plasmid is cut by
enzymes | and 2 (enzyme 1 cuts in the insert and enzyme 2 cuts
in the plasmid). On the basis of the obtained fragment size (as
determined by agarose electrophoresis), the orientation of the
insert can be deduced (b).

During electroporation, an electric pulse is applied to
the cells, which results in the formation of small pores
in the plasma membrane. Through these pores the
plasmid DNA can enter the cells.

Transfection leads to transient expression of the
introduced gene. The introduced plasmids are rapidly
diluted as a consequence of cell division or even

degraded. However, it is possible to stably transfect
cells leading to long expression periods. Then, the plas-
mid DNA has to integrate into the chromosomal DNA
of the host cell. To accomplish this, a selection gene is
normally included into the expression vector, which
gives the transfected cells a selectable growth advan-
tage. Only those cells that have integrated the selection

Box 1.3 = DNA Sequencing.

Technical breakthroughs in DNA sequencing, the determi-
nation of the nucleotide sequence, permit the sequencing of
entire genomes, including the human genome. It all started
with the sequencing in 1977 of the 5,386-nucleotide-long
single-stranded genome of the bacteriophage ¢X174.

Chain-termination method
sequencing
The most used method for DNA sequencing is the chain-
termination method, also known as the dideoxynucleotide
method, as developed by Frederick Sanger in the 1970s.
The method starts by creating millions of copies of the
DNA to be sequenced. This can be done by isolating plas-
mids with the DNA inserted from bacterial cultures or by
PCR. Next, the obtained double-stranded DNA molecules
are denatured, and the reverse strand of one of the two
original DNA strands is synthesized using DNA poly-
merase, a DNA primer complementary to a sequence
upstream of the sequence to be determined, normal
deoxynucleotidetriphosphates (dNTPs), and dideoxyNTPs
(ddNTPs) that terminate DNA strand elongation. The four
different ddNTPs (ddATP, ddGTP, ddCTP, or ddTTP) miss
the 3'OH group required for the formation of a phosphodi-
ester bond between two nucleotides and are each labeled
with a different fluorescent dye, each emits light at different
wavelengths. This reaction results in different reverse
strand DNA molecules extended to different lengths.
Following denaturation and removal of the free nucleo-
tides, primers, and the enzyme, the resulting DNA mole-
cules are separated on the basis of their molecular weight
with a resolution of just one nucleotide (corresponding to
the point of termination). The presence of the fluorescent
label attached to the terminating ddNTPs makes a sequen-
tially read out in the order created by the separation pro-
cess possible. See also the figures below. The separation
of the DNA molecules is nowadays carried out by capillary
electrophoresis. The available capillary sequencing sys-
tems are able to run in parallel 96 or 384 samples with a
length of 600 to 1,000 nucleotides. With the more common
96 capillary systems, it is possible to obtain around 6 mil-
lion bases (Mb) of sequence per day.

and high-throughput

Next-generation sequencing

The capillary sequencing systems are still used a lot, but
they will be replaced in the future by alternative systems
with a much higher output (100—1,000 times more) and at
the same time a strong reduction in the costs.

The description of these really high-throughput sys-
tems is beyond the purpose of this book. An excellent
review about this topic is written by Kirchner and Kelso
(2010).

(continued)
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Box 1.3 ™ (continued)

Schematic representation of the DNA
sequencing process

a DNA synthesis in the presence of dNTPs and fluorescently
labeled ddNTPs (T,C,A,orG)

Target sequence
3 --GGGTCCAGTGGCAGAGGATTCCGCC
--CCCAGG —

--CCCAGGT
--CCCAGGTC
--CCCAGGTCA
--CCCAGGTCAC
--CCCAGGTCACC
--CCCAGGTCACCG

@

primer extension

b Separation of the synthesized DNA molecules by capillary
electrophoresis and In’-}ad out of fluorescence

GGGGACCCAGGTCACCGTCTCCTCAGGCGG
Schematic representation of the DNA sequencing process

[ 1]

marker (and most likely, but not necessary, also the
gene of interest) into their genome will survive. Most
expression plasmids for mammalian cells contain as
selection marker the neomycin resistance gene (Neo").
This gene codes for a protein that neutralizes the toxic
drug Geneticin, also known as G418. The entire selec-
tion process takes around 2 weeks and results in a tissue
culture dish with several colonies. Each colony contains
the descendants of 1 stably transfected cell. Then, the
cells from individual colonies have to be isolated and
further expanded. The next step will be to quantify the
recombinant protein production of the obtained cell
cultures and to select those with the highest yields.

Transfection of mammalian cells is a very ineffi-
cient process (compared to transformation of E. coli)
and needs relative large amounts of plasmid DNA.
Integration of the transfected plasmid DNA into the
genome is a very rare event. As a typical example,
starting with 107 mammalian cells, one obtains usually
not more than 10? stably expressing clones.

W Cell Culture

A big challenge is to scale up cell cultures from lab
scale (e.g., a 75 cm? tissue culture bottle) to a large-scale
production platform (like a bioreactor). Mammalian
cells are relatively weak and may easily become dam-
aged by stirring or pumping liquid in or out a fermen-
ter (shear stress). In this respect, E. coli is much sturdy,
and thus this bacterium can therefore be grown in
much larger fermenters.

A particular problem is the large-scale culturing of
adherent (versus suspended) mammalian cells. One way
to grow adherent cells in large amounts is on the surface
of small beads. After a while the surface of the beads will

be completely covered (confluent) with cells, and then, it
is necessary to detach the cells from the beads and to re-
divide the cells over more (empty) beads and to transfer
them to a bioreactor compatible with higher working
volumes. To loosen the cells from the beads, usually the
protease trypsin is used. It is very important that the
trypsinization process is well timed: if it is too short,
many cells are still on the beads, and if it is too long, the
cells will lose their integrity and will not survive this.

Some companies have tackled the scale-up prob-
lem by “simply” culturing and expanding their adher-
ent cells in increasing amounts of roller bottles. These
bottles revolve slowly (between 5 and 60 revolutions
per hour), which bathes the cells that are attached to
the inner surface with medium (see Fig. 1.12). See
Chap. 3 for more in-depth information.

M Purification; Downstream Processing

Recombinant proteins are usually purified from cell
culture supernatants or cell extracts by filtration and
conventional column chromatography, including affin-
ity chromatography (see Chap. 3).

The aim of the downstream processing (DSP) is
to purify the therapeutic protein from (potential)
endogenous and extraneous contaminants, like host
cell proteins, DNA, and viruses.

Itis important to mention here that slight changes
in the purification process of a therapeutic protein may
affect its activity and the amount and nature of the
co-purified impurities. This is one of the main reasons
(in addition to differences in expression host and cul-
ture conditions) why follow-on products (after expira-
tion of the patent) made by a different company will
never be identical to the original preparation and that
is why they are not considered a true generic product
(see also Chap. 11). A generic drug must contain the
same active ingredient as the original drug, and in the
case of a therapeutic protein, this is almost impossible
and that is why the term “biosimilar” was invented.

Although not often used for the production of
therapeutic proteins, recombinant protein purification
may be simplified by linking it with an affinity tag,
such as the his-tag (6 histidines). His-tagged proteins
have a high affinity for Ni*-containing resins. There
are two ways to add the 6 histidine residues. The DNA
encoding the protein may be inserted into a plasmid
encoding already a his-tag. Another possibility is to
perform a PCR reaction with a regular primer and a
primer with at its 5’end 6 histidine codons (CAT or
CAC) (see Fig. 1.13). To enable easy removal of the his-
tag from the recombinant protein, the tag may be fol-
lowed by a suitable amino acid sequence that is
recognized by an endopeptidase.

In E. coli, recombinant proteins are often pro-
duced as a fusion protein with another protein such as
thioredoxin, beta-galactosidase, and glutathione


http://dx.doi.org/10.1007/978-1-4614-6486-0_3
http://dx.doi.org/10.1007/978-1-4614-6486-0_3
http://dx.doi.org/10.1007/978-1-4614-6486-0_11
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S-transferase (GST). These fusion partners may
improve the proper folding of the recombinant protein
and may be used as affinity tag for purification.

MONOCLONAL ANTIBODIES

So far, we discussed the selection, design, and produc-
tion of a protein starting from a DNA sequence in a
genomic database. There is no database available of the
entire repertoire of human antibodies. Potentially there
are millions of different antibodies possible, and our

Driven
Roller
Figure 1.12 m Cell culturing in

roller bottles.

knowledge about antibody-antigen interactions is not
large enough to design a specific antibody from scratch.

Many marketed therapeutic proteins are monoclo-
nal antibodies (cf. Chaps. 7, 17, 19, and 20). We will focus
here on the molecular biological aspects of the design
and production of (humanized) monoclonal antibodies
in cell culture (primarily CHO cells are used). For a
description of the structural elements of monoclonal
antibodies, we refer to Chapter 7, Figs. 1.1 and 1.2.

The classic way to make a monoclonal antibody
starts by immunizing a laboratory animal with a puri-


http://dx.doi.org/10.1007/978-1-4614-6486-0_7
http://dx.doi.org/10.1007/978-1-4614-6486-0_17
http://dx.doi.org/10.1007/978-1-4614-6486-0_19
http://dx.doi.org/10.1007/978-1-4614-6486-0_20
http://dx.doi.org/10.1007/978-1-4614-6486-0_7
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Arg-Gly-Glu-Ile-His-His-His-His-His-His

Recognition site for the protease Factor Xa

g’ Forward primer

His-tag binds to Ni?*

5!

NNNNNNNNNNNNNNNNNN

5!

5

Reverse primer

XXX XXX XXX XXX XXX XXX ILE GLU GLY ARG HIS HIS HIS HIS HIS HIS stop
5'NNN NNN NNN NNN NNN NNN ATT GAA GGA CGT CAT CAT CAT CAT CAT CAT TAA

REVERSE PRIMER:
5" TTA ATG ATG ATG ATG ATG ATG ACG TCC TTC AAT NNN NNN NNN NNN NNN NNN

Figure 1.13 m (a) Schematic drawing of a his-tagged fusion protein. (b) Design of the primers needed to generate a his-tag at the

carboxy-terminal end of a protein.

fied human protein against which the antibody should
be directed (see Fig. 1.14). In most cases, mice are used.
The immunization process (a number of injections with
the antigens and an adjuvant) will take several weeks.
Then the spleens of these mice are removed and lym-
phocytes are isolated. Subsequently, the lymphocytes
are fused using polyethylene glycol (PEG) with a
myeloma cell. The resulting hybridoma cell inherited
from the lymphocytes the ability to produce antibodies
and from the myeloma cell line the ability to divide
indefinitely. To select hybridoma cells from the excess of
non-fused lymphocytes and myeloma cells, the cells are
grown in HAT selection medium. This culture medium
contains hypoxanthine, aminopterin, and thymidine.
The myeloma cell lines used for the production of mono-
clonal antibodies contain an inactive hypoxanthine-
guanine phosphoribosyltransferase (HGPRT), an
enzyme necessary for the salvage synthesis of nucleic
acids. The lack of HGPRT activity is not a problem for
the myeloma cells because they can still synthesize
purines de novo. By exposing the myeloma cells to the
drug aminopterin also de novo synthesis of purines is
blocked and these cells will not survive anymore.
Selection against the unfused lymphocytes is not neces-
sary, since these cells, like most primary cells, do not sur-

vive for a long time in cell culture. After PEG treatment,
the cells are diluted and divided over several dishes.
After approximately 2 weeks, individual clones are vis-
ible. Each clone contains the descendants of one hybrid-
oma cell and will produce one particular type of
antibody (that is why they are called monoclonal anti-
bodies). The next step is to isolate hybridoma cells from
individual clones and grow them in separate wells of a
96-well plate. The hybridomas secrete antibodies into
the culture medium. Using a suitable test (e.g., an
ELISA), the obtained culture media can be screened for
antibody binding to the antigen. The obtained antibod-
ies can then be further characterized using other tests. In
this way a mouse monoclonal antibody is generated.
These mouse monoclonal antibodies cannot be
used directly for the treatment of human patients. The
amino acid sequence of a mouse antibody is too differ-
ent from the sequence of an antibody in humans and
thus will elicit an immune response. To make a mouse
antibody less immunogenic, the main part of its
sequence must be replaced by the corresponding
human sequence. Initially, human-mouse chimeric
antibodies were made. These antibodies consisted of
the constant regions of the human heavy and light
chain and the variable regions of the mouse antibody.
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Later, so-called humanized antibodies were generated
by grafting only the complementarity-determining
regions (CDRs), which are responsible for the antigen-
binding properties, of the selected mouse antibody
onto a human framework of the variable light (V) and
heavy (Vy) domains. The humanized antibodies are
much less immunogenic than the previously used chi-
meric antibodies. To even further reduce immunoge-
nicity, SDR grafting is used nowadays (Kashmiri et al.
2005). SDR stands for 'specificity determining residues'.
From the analysis of the 3-D structure of antibodies, it
appeared that only~30 % of the amino acid residues
present in the CDRs are critical for antigen binding.
These residues, which form the SDR, are thought to be
unique for a given antibody.

Humanization of a mouse antibody is a difficult
and tricky process. It results usually in a reduction of
the affinity of the antibody for its antigen. One of the
challenges is the selection of the most appropriate
human antibody framework. This framework deter-
mines basically the structure of the antibody a